
 Zakład Mikroinformatyki
 i Teorii Automatów Cyfrowych

 © 2015 Piotr Czekalski, Piotr Czekalski (edt.)

1. Programming in Assembler

Laboratory manual

Exercise 9

Integrating .NET and x64 native assembler code in one solution

using Visual Studio

LAB PiA
Ex.9. Integrating .NET and x64 native assembler code in one solution

 Page 2 of 23

Exercise goal:
Students get familiarized with x64 programming and integration with .NET framework - by building
sample Windows Presentation Foundation application and handling calculations in x64 assembler (native
code) to speed up processing and calculations. Students also get familiarized with SSE and AVX extensions
providing SIMD computation model.

1. General purpose x64 registers
The x64 capable processors (both AMD and Intel) provided extension to the 8 existing registers from 32 to
64 bits as well as adds new, 8 64bit registers unknown for x86. The general purpose registers (as on March
2015) for 64bit operations are juxtaposed in the table below:

64 bit 32 bit 16 bit 8 bit
rax eax ax al
rbx ebx bx bl
rcx ecx cx cl
rdx edx dx dl
rsi esi si sil
rdi edi di dil
rbp ebp bp bpl
rsp esp sp spl
r8 r8d r8w r8b
r9 r9d r9w r9b
r10 r10d r10w r10b
r11 r11d r11w r11b
r12 r12d r12w r12b
r13 r13d r13w r13b
r14 r14d r14w r14b
r15 r15d r15w r15b

Sample register size and overlapping of the particular sizes is presented below:

Quad words (rax)
 Double word (eax)
 Word (ax)
 Byte (al)

63 32 31 16 15 8 7 0

One should note that whenever writing a 32 bit value into the 64 bit registers, the more significant part is
automatically zero-extended but 16 and 8 bit values are NOT zero-extended automatically (this behavior is
compatible with x86 default behavior).

2. SIMD registers
By the side of the general purpose registers, SIMD registers were extended along with x64 introduction -
existing 64bit MMX registers were supplied and overlapped with 128 bit SSE and the 256 bit AVX registers
(AVX registers are subject of future 512 bit and 1024 bit length extensions in forthcoming processor
families as on Q1 2015). The exact set of the registers varies depending on the processor family, moreover
XMM registers are accessible in x86 mode, however only xmm0 through xmm7 (first 8 of the xmm
registers). The remaining 8 xmm registers (xmm8 through xmm15 were introduced in first generation of the

LAB PiA
Ex.9. Integrating .NET and x64 native assembler code in one solution

 Page 3 of 23

64bit processors). The AVX 256bit registers noted as ymm0 through ymm15 overlap xmm registers where
i.e. xmm0 register is simply a lower significant 128bits of the ymm0 register. Similar way, when processor
is working in 32 bit mode, only first 8 ymm0 through ymm7 registers are available for operations:

AVX SSE

 Bits 255 128 127 0
 1 ymm0 xmm0

64 bit (x64)

32 bit (x86)

2 ymm1 xmm1
3 ymm2 xmm2
4 ymm3 xmm3
5 ymm4 xmm4
6 ymm5 xmm5
7 ymm6 xmm6
8 ymm7 xmm7
9 ymm8 xmm8

 10 ymm9 xmm9
 11 ymm10 xmm10
 12 ymm11 xmm11
 13 ymm12 xmm12
 14 ymm13 xmm13
 15 ymm14 xmm14
 16 ymm15 xmm15

Future extension to the AVX registers on its length is also expected to increase the total number of registers
to 32.

3. x64 calling convention
Calling convention is unified a method of passing arguments to/from the procedure. It applies both to the
.NET-to-native code as well as to the native (pure assembler code) calls.
Unlike the x86, fortunately there is only one x64 calling convention, sometime referenced as fastcall, as
uses increased amount of 64-bit registers. The stack is used when the amount of the arguments is above of
the scope of the via-registry passing. The details are presented in the following chapters. The caller (the
party that invokes the procedure/function) passes up to 4 arguments via registry, but also reserves space on
the stack for arguments passed in registers. Any additional arguments are passed on the stack only.
There are three kind of arguments to be considered: integers, floats and pointers.

3.1. Passing of integer values and pointers (references)
Parameters up to 4 are passed via 64bit registers (in any case one should operate using 64bit values,
when using 32, 16 or 8 bit arguments the need to be extended to 64bits or passed within the structure
using a pointer).
The order is left to right, as follows: first function parameter->rcx, second->rdx, third->r8, fourth->r9.
The pointer is passed as 64bit value (an address) and it is callee’s duty to handle it appropriately.

Sample:

C#/.NET prototype:
sampleAdd(int a, int b, int c, int d)

 (a is passed in rcx, b in rdx, c in r8, d in r9)

LAB PiA
Ex.9. Integrating .NET and x64 native assembler code in one solution

 Page 4 of 23

Assembler implementation:
sampleAdd proc
 mov rax, rcx ; rax<-a
 add rax, rdx ; rax+=b
 add rax, r8 ; rax+=c
 add rax, r9 ; rax+=d

ret
sampleAdd endp

3.2. Passing of the floating point values
Parameters up to 4 are passed via first 4 SSE registers: xmm0<->xmm3 (considering from left to right,
first parameter->xmm0, second->xmm1, third->xmm2, fourth->xmm3. The register size is 128bits so
floating point values up to 128bit length can be passed (i.e. .NET float that is 32bits long or .NET
double that is 64 bit long).
Sample:

C#/.NET prototype:
sampleSub(double a, float b)

 (a is passed in xmm0/ymm0, b is passed in xmm1/ymm1)

Assembler implementation:
sampleSub proc
 vsubpd ymm0, ymm0, ymm1 ; mind that ymm registers overlay xmms

ret
sampleSub endp

3.3. Mixed types
When mixing integer and floating point arguments, the absolute argument position denotes the register
used for passing the arguments i.e.:
C#/.NET prototype:
sampleSub(double a, int b, float c, int d)

 (a is passed in xmm0/ymm0, b is passed in rdx, c in xmm2/ymm2, d in r9)

3.4. Stack allocation – passing more than 4 values to the function
More than 4 values are passed via stack. The 5th argument can be accessed as [rsp+28h], the following
arguments are addressed linearly, every 8 bytes (64 bits). The first fife arguments represent (in the order:

 caller return address [rsp+0],
 argument 1 [rsp+8h],
 argument 2 [rsp+10h],
 argument 3 [rsp+18h],
 argument 4 [rsp+20h].

The argument 1 through 4 are those passed via registers and calling convention requires to reserve this
space even if those arguments are not physically loaded into the stack. This way 5th argument is always
present at [rsp+28h] even if arguments 1 through 4 are passed via registers only. This approach is

LAB PiA
Ex.9. Integrating .NET and x64 native assembler code in one solution

 Page 5 of 23

compatible with mixed types passing as presented in the previous chapters – the stack may contain
mixed types because both integers and floating point values are passed as 64bit, so do pointers.

3.5. Return values
The callee returns the values in the appropriate register with respect to the value type:

 integer or pointer value is returned in rax,
 floating point value is returned in xmm0 (a lower 128bits of the ymm0 AVX extensions thus

values can be also referenced as ymm0),
 multiple values are returned as pointer to the structure. The pointer is returned in rax register.

4. Integrating .NET and assembler native code:
Cooperation between managed and native code is possible with means of wrappers. Fortunately most of the
job is done through .NET compiler but unfortunately, creating one solution with managed and unmanaged
code is pretty tricky. This laboratory scenario assumes the user interface is created using .NET framework
(C# language) while computation is done by the native (assembler) code. The .NET party is not limited to
the WPF model as presented here – actually any .NET but also C++ native and managed code is capable to
call pure, assembler, native code. For the simplicity, this lab uses WPF (Windows Presentation Foundation)
direct model (in opposite to the MVVM model) but the .NET application could be anything from command
line app to the web application. In any case, the assembler – native code is organized as a DLL library
(originally as C++ dll model, then ported to the assembler code) with code organized as a set of computation
functions, embedded into the main, .NET application. It is essential to note that native code is not managed
by the .NET framework memory management (particularly Garbage Collector that may relocate variables
and classes through stack and heap) so to persist the pointers between managed and unmanaged code it is
essential to mark managed code prototypes as unsafe and .NET structures as fixed, to disable data
relocation due to the .NET Garbage Collector tasks.

The following sections present hands-on lab on creating .NET framework WPF simple dialog then creating
a managed code DLL implemented in assembler. If you already own the solution, you may omit the .NET
implementation part and focus on the assembler functions.

Warning. The following hands-on lab assumes you’re using Debug mode only. To generate Release it is
necessary to configure separately some of the settings similar way it is presented for the Debug mode in the
following chapter. It is not done by the compiler automatically, however!

4.1. Tasks to perform during labs
The WPF part assumes there is a dialog box with set of controls providing one (or many) functionalities:

 Adding at least 2 integer values given by values within text boxes.
 Adding at least 2 floating point values (mixed - float, double) given by values within text boxes.
 Calculating sum of an array of integers given by the table (int array).

.NET
application

.NET
prototypes of
the unmanaged
code

Assembler,
unmanaged
code

Managed code Unmanaged code

LAB PiA
Ex.9. Integrating .NET and x64 native assembler code in one solution

 Page 6 of 23

 Computing the weighted average of the four products given by the double and integer each, using
SIMD and mixed mode.

 Performing some operation on the image (byte array).
The underlined scenario’s implementation is presented in the following chapters.

4.2. Solution
The .NET solution is composed of the two projects:

 a WPF dialog box (UI),
 a C++ DLL library project, converted to handle assembler code.

4.2.1. Create new projects and constitute solution

Start Visual Studio then create new project [Menu: File->New->Project]. Choose: [Installed->Visual C#-
>WPF Application]. This creates WPF application (a user interface). Give it some reasonable name.

LAB PiA
Ex.9. Integrating .NET and x64 native assembler code in one solution

 Page 7 of 23

Once created, add another project that will hold the assembler code inside. This is C++ DLL project. To do
so, right click the [Solution] in the Solution Explorer window, then choose: [Add->New Project]. Mind that
you need to right click the [Solution], not the [Project] (right click menu varies by context):

then choose [Empty Project Visual C++], give it some name and accept:

LAB PiA
Ex.9. Integrating .NET and x64 native assembler code in one solution

 Page 8 of 23

4.2.2. Add source files
The WPF User Interface has created some empty dialog box (will return to this later) but assembler project
is empty. To create an empty source file in assembler project, right click the [Project] in the Solution
Explorer, choose [C++ File (.cpp)], change its extension to “.asm” then click [Add] as presented below:

Repeat the step above to add the exporting definition file (.def) for the linker. Mind that the file needs to
have the same name as your .asm file and the extension should be .def.

Your solution should look similar to the image below:

In the example above, the compiler will create Asm.dll (the dll name is the project name, not a source file
name).

The assembler source file (.asm) contains assembler functions that will constitute the library, while .def file
informs the compiler, which function are provided for the rest of the code (here the caller is the WPF UI

LAB PiA
Ex.9. Integrating .NET and x64 native assembler code in one solution

 Page 9 of 23

app). Whenever there is new function added to the assembler code, the .def file should be updated along
with appropriate function name.

4.2.3. Constructing the building order dependencies and compiler configuration
The compiler uses somehow “unusual”1 combination of the managed and native code, so you need to
inform the compiler how to compile the assembler library when building the solution (and how to maintain
the rebuild order, when necessary) It is done via building customization. To do so, right click the assembler
library project and choose [Build Dependencies->Building Customization] then check: [masm(.targets,
.props)] and accept clicking [OK] as presented below:

1 The Visual Studio is capable to compile dozens of different targets and platforms. “Unusual” does not mean “unknown” – the native
assembler coding is considered somehow uncommon now and for geeks/professionals than for regular programmers as it provides
great performance to the results but is quite hard and not so user friendly as high level languages. One need to “enable” this feature of
the compiler before use.

LAB PiA
Ex.9. Integrating .NET and x64 native assembler code in one solution

 Page 10 of 23

Current default configuration for the C++ project (assembler project) states it is Win32 (x86, 32-bit
application). To switch from x86 to x64 code it is necessary to construct new solution platform – an Intel
x64 code. To do it, right click [Solution] then choose [Configuration Manager]. In the dialog box select
assembler project then expand the combo in the “Platform” column and select <New…>:

Once the “New Project Platform” appears, set “x64” in “New platform:” and set “Copy settings from:” to
“Win32”. This will preserve all setting done to the project till now:

The active configuration should change to x64 (previously Win32) now.

LAB PiA
Ex.9. Integrating .NET and x64 native assembler code in one solution

 Page 11 of 23

Now one need to inform the compiler, that source assembler code (.asm file) should be handled by the
Masm (assembler) compiler. To do so select the assembler source file in the solution explorer then right
click the file (.asm) and then choose [Properties]. Within the [Configuration Properties->General] section
change [Item Type] to “Microsoft Macro Assembler” then click [OK]:

LAB PiA
Ex.9. Integrating .NET and x64 native assembler code in one solution

 Page 12 of 23

Following step is to inform the compiler on the building order and the building target. The model assumes
dynamic DLL loading (during runtime) so the binary, compiled DLL library has to be located in the same
directory as your WPF UI application.

To do so, right-click the [Solution] in the Solution Explorer window then choose [Project Dependencies],
choose your WPF UI project and mark that its building is depending on the assembler library (this way your
assembler library is compiled first, before your WPF application):

LAB PiA
Ex.9. Integrating .NET and x64 native assembler code in one solution

 Page 13 of 23

Now it is necessary to switch the project from the empty to let it create DLL file. Right click the assembler
project, choose [Properties]. Then set the following set of configuration properties:

 in the [Configuration Properties->General] set:
o “Target Extension” to .dll
o “Configuration Type” to “Dynamic Library (.dll)”

LAB PiA
Ex.9. Integrating .NET and x64 native assembler code in one solution

 Page 14 of 23

 in the [Configuration Properties->General->Linker->Input]:
o provide your definition (.def) file in the “Module Definition File” property

LAB PiA
Ex.9. Integrating .NET and x64 native assembler code in one solution

 Page 15 of 23

 in the [Configuration Properties->General->Linker->System] set:
o “Subsystem” to “Windows (/SUBSYSTEM:WINDOWS)”

LAB PiA
Ex.9. Integrating .NET and x64 native assembler code in one solution

 Page 16 of 23

 in the [Configuration Properties->General->Linker->Advanced] set:
o “No Entry Point” to “Yes(/NOENTRY)”

and then click [OK].

LAB PiA
Ex.9. Integrating .NET and x64 native assembler code in one solution

 Page 17 of 23

4.3. Common output directory
The solution is composed of two projects each of them is compiled independently. When compiling the
DLL, the target (resulting, compiled) file should be injected into the user interface project to let the WPF UI
be able to load it dynamically (it expects it in the current directory regarding the .exe location). VS does
provide various macros with the appropriate directory names, unfortunately they are limited to the single
project and the entire solution. The only reasonable idea is to create separate target folder on the solution
level that can be referenced by both projects and thus integrate two outputs. Unfortunately the output
directory is set different way in the different projects.

To set the output project for the assembler party, right click the assembler project in the Solution Explorer
window then select [Properties]. Browse to [Configuration Properties->General] and verify if “Output
Directory” contains: $(SolutionDir)$(Platform)\$(Configuration)\ . Correct if necessary.

While compiling, the above setting will compile the assembler DLL in to the following directory:
<solution>\x64\Debug (or <solution>\x64\Release, regarding your current build mode).

LAB PiA
Ex.9. Integrating .NET and x64 native assembler code in one solution

 Page 18 of 23

Now it is time to let WPF UI application compile into the same directory as assembler project does. This is
done for Debug mode and for Release mode independently. Right click the WPF UI project in the Solution
Explorer then select [Properties]. Choose “Build” on the left then switch “Configuration:” to “Active
(Debug)” or “Debug” when necessary, choose “Platform target:” to “x64”, provide “Output path:” equal
“x64\Debug”.
Remember to check “Allow unsafe code” (otherwise unsafe clause will cause compile errors).
The configuration for the “Debug” is presented below:

LAB PiA
Ex.9. Integrating .NET and x64 native assembler code in one solution

 Page 19 of 23

By default, the debugging is limited to the managed code only. To enable debugging of both kinds of code
(even in one debug session!) it is necessary to right click WPF UI project then select [Properties], navigate
to the Debug tab and check “Enable native code debugging”:

LAB PiA
Ex.9. Integrating .NET and x64 native assembler code in one solution

 Page 20 of 23

4.4. Compile the project

Empty assembler project won’t compile successfully. It is necessary to provide at least minimum assembler
code into the assembler (.asm) file:

.data
.code

end

and minimum information to the definition (.def) file:

LIBRARY "Asm"
EXPORTS

The project should create the appropriate output directory and generate both assembler DLL and WPF UI
executable in the single directory. The Output window shall contain the information on successfully
compiled two projects:

The target (build) folder should contain:

LAB PiA
Ex.9. Integrating .NET and x64 native assembler code in one solution

 Page 21 of 23

5. Implementation
Implementing simple technology sampler that performs adding operation on two floats require two input
boxes for input, one for output and a button triggering operation:

The XAML code of the UI may look this:

<Window x:Class="WpfUI.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">
 <Grid>
 <StackPanel Margin="10" HorizontalAlignment="Left" Orientation="Horizontal"
VerticalAlignment="Top">
 <Label>A:</Label>
 <TextBox Width="80" Name="txtA" Margin="10,0"/>
 <Label>+ B:</Label>
 <TextBox Width="80" Name="txtB" Margin="10,0"/>
 <Label>=</Label>
 <Button Content="Sum" Click="Button_Click"/>
 <TextBox Width="160" Name="Result" Margin="10,0"/>
 </StackPanel>
 </Grid>
</Window>

LAB PiA
Ex.9. Integrating .NET and x64 native assembler code in one solution

 Page 22 of 23

Observe the button on-click event (Button_Click) that will handle operation. This function appears
automatically once you click the button within the UI designer window. The empty, Button_Click function
is added to the “code behind” in C# language (the file with the name of the dialog windo and extension
.xaml.cs:

namespace WpfUI
{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();
 }
 private void Button_Click(object sender, RoutedEventArgs e)
 {
 }
 }
}

To importing the DLL into the C# it is necessary to provide using directive on
System.Runtime.InteropServices namespace and provide function prototype with arguments
identical to the assembler implementation. Moreover it is essential to mark this code as unsafe to let the
Garbage Collector do not move the pointers and do not modify the memory.
Sample implementation may look similar to the:

using System.Runtime.InteropServices;

 public class AsmProxy
 {
 [DllImport("Asm.dll")]
 private static extern double asmAddTwoDoubles(double a, double b);

 public double executeAsmAddTwoDoubles(double a, double b)
 {
 return asmAddTwoDoubles(a, b);
 }
 }

Once the code is ready the click handler can be implemented:

 private void Button_Click(object sender, RoutedEventArgs e)
 {
 AsmProxy asmP = new AsmProxy();
 double a, b, r;
 a = Double.Parse(txtA.Text); //convert argument 1 from text (WPF UI) to double
 b = Double.Parse(txtB.Text); //convert argument 2 from text (WPF UI) to double
 r = asmP.executeAsmAddTwoDoubles(a, b);//execute assembler code
 Result.Text = r.ToString(); //return value to the WPF UI as text
 }

LAB PiA
Ex.9. Integrating .NET and x64 native assembler code in one solution

 Page 23 of 23

Before final compiling, the assembler implementation requires providing the assembler code in the
assembler source (.asm) file, i.e.:

.data

.code
asmAddTwoDoubles proc
 vaddpd ymm0, ymm0, ymm1
 ret
asmAddTwoDoubles endp
end

and corresponding export definition (.def) file:

LIBRARY "Asm"
EXPORTS

asmAddTwoDoubles

The function above (asmAddTwoDoubles) is a leaf function thus does not require stack modification on
return (RSP).

