Zaktad Mikroinformatyki uﬁjﬁa%&
i Teorii Automatéw Cyfrowych " ol

1.Programming in Assembler

Laboratory manual

Exercise 9

Integrating .NET and x64 native assembler code in one solution

using Visual Studio

© 2015 Piotr Czekalski, Piotr Czekalski (edt.)

. T
LAB PiA Snlad
Ex.9. Integrating .NET and x64 native assembler code in one solution i\:ﬁ%{%’}:

gy

Exercise goal:
Students get familiarized with x64 programming and integration with .NET framework - by building

sample Windows Presentation Foundation application and handling calculations in x64 assembler (native
code) to speed up processing and calculations. Students also get familiarized with SSE and AVX extensions
providing SIMD computation model.

1. General purpose x64 registers

The x64 capable processors (both AMD and Intel) provided extension to the 8 existing registers from 32 to
64 bits as well as adds new, 8 64bit registers unknown for x86. The general purpose registers (as on March
2015) for 64bit operations are juxtaposed in the table below:

64 bit 32 bit 16 bit 8 bit \
rax eax ax al
rbx ebx bx bl
rex ecx cX cl
rdx edx dx dl
1si esi si sil
rdi edi di dil
rbp ebp bp bpl
sp esp sp spl

r8 r8d r8w r8b
r9 r9d 9w r9b
r10 r10d r10w r10b
rll rlld rllw rl1b
r12 r12d r12w r12b
rl3 r13d r13w r13b
rl4 rl4d rl4w r14b
rl5 r15d r15w r15b

Sample register size and overlapping of the particular sizes is presented below:

\ Quad words (rax)
\ Double word (eax)
| Word (ax)
Byte (al)

63 32 ‘31 16‘15 8‘7 0‘
|

One should note that whenever writing a 32 bit value into the 64 bit registers, the more significant part is

automatically zero-extended but 16 and 8 bit values are NOT zero-extended automatically (this behavior is

compatible with x86 default behavior).

2. SIMD registers

By the side of the general purpose registers, SIMD registers were extended along with x64 introduction -
existing 64bit MMX registers were supplied and overlapped with 128 bit SSE and the 256 bit AVX registers
(AVX registers are subject of future 512 bit and 1024 bit length extensions in forthcoming processor
families as on Q1 2015). The exact set of the registers varies depending on the processor family, moreover
XMM registers are accessible in x86 mode, however only xmm0 through xmm?7 (first 8 of the xmm
registers). The remaining 8 xmm registers (xmm8 through xmm15 were introduced in first generation of the

Page 2 0f 23

LAB PiA

Ex.9. Integrating .NET and x64 native assembler code in one solution

64bit processors). The AVX 256bit registers noted as ymmO through ymm15 overlap xmm registers where
i.e. xmmo register is simply a lower significant 128bits of the ymmO register. Similar way, when processor
is working in 32 bit mode, only first § ymmO through ymm?7 registers are available for operations:

AVX SSE
Bits 255 128 127 0

ymmO xmmO

ymm1l xmm1l

ymm?2 xmm?2 »
ymm3 xmm3 =2
ymmé4 xmmé4 B
ymmb5 Xxmmb5 2
ymmé6 Xmmo6 Q
ymm?7 xmm?7 =2
ymms$ xmm8 ’g
ymm9 xmm9 =
ymm10 xmm10

ymm1ll xmm1ll

ymm12 xmm12

ymm13 xmm13

ymm14 xmm14

ymm15 xmm15

Future extension to the AVX registers on its length is also expected to increase the total number of registers
to 32.

3. x64 calling convention

Calling convention is unified a method of passing arguments to/from the procedure. It applies both to the
.NET-to-native code as well as to the native (pure assembler code) calls.

Unlike the x86, fortunately there is only one x64 calling convention, sometime referenced as fastcall, as
uses increased amount of 64-bit registers. The stack is used when the amount of the arguments is above of
the scope of the via-registry passing. The details are presented in the following chapters. The caller (the
party that invokes the procedure/function) passes up to 4 arguments via registry, but also reserves space on
the stack for arguments passed in registers. Any additional arguments are passed on the stack only.

There are three kind of arguments to be considered: integers, floats and pointers.

3.1. Passing of integer values and pointers (references)

Parameters up to 4 are passed via 64bit registers (in any case one should operate using 64bit values,
when using 32, 16 or 8 bit arguments the need to be extended to 64bits or passed within the structure
using a pointer).

The order is left to right, as follows: first function parameter->rcx, second->rdx, third->r8, fourth->r9.
The pointer is passed as 64bit value (an address) and it is callee’s duty to handle it appropriately.

Sample:
C#/.NET prototype:

sampleAdd (int a, int b, int ¢, int d)
(a is passed in rex, b in rdx, ¢ in r8, d in r9)

Page 3 0f 23

LAB PiA o

Ex.9. Integrating .NET and x64 native assembler code in one solution

Assembler implementation:

sampleAdd proc
mov rax, rcx ; rax<-a
add rax, rdx ; rax+=b
add rax, r8 ; rax+=c
add rax, r9 ; rax+=d
ret

sampleAdd endp

3.2. Passing of the floating point values

Parameters up to 4 are passed via first 4 SSE registers: xmm0<->xmm3 (considering from left to right,
first parameter->xmm0, second->xmm1, third->xmm2, fourth->xmm3. The register size is 128bits so
floating point values up to 128bit length can be passed (i.e. .NET float that is 32bits long or .NET
double that is 64 bit long).

Sample:

C#/.NET prototype:
sampleSub (double a, float b)
(a is passed in xmm0/ymm0, b is passed in xmm1/ymm1)

Assembler implementation:

sampleSub proc
vsubpd ymmO, ymmO, ymml ; mind that ymm registers overlay xmms
ret

sampleSub endp

3.3. Mixed types

When mixing integer and floating point arguments, the absolute argument position denotes the register

used for passing the arguments i.e.:

C#/.NET prototype:

sampleSub (double a, int b, float ¢, int d) \
(a is passed in xmm0/ymm0, b is passed in rdx, ¢ in xmm2/ymm?2, d in r9)

3.4. Stack allocation — passing more than 4 values to the function
More than 4 values are passed via stack. The 5 argument can be accessed as [rsp+28h], the following
arguments are addressed linearly, every 8 bytes (64 bits). The first fife arguments represent (in the order:
e caller return address [rsp+0],
e argument | [rsp+8h],
e argument 2 [rsp+10h],
e argument 3 [rsp+18h],
e argument 4 [rsp+20h].
The argument 1 through 4 are those passed via registers and calling convention requires to reserve this
space even if those arguments are not physically loaded into the stack. This way 5™ argument is always
present at [rsp+28h] even if arguments 1 through 4 are passed via registers only. This approach is

Page 4 0f 23

LAB PiA

Ex.9. Integrating .NET and x64 native assembler code in one solution

compatible with mixed types passing as presented in the previous chapters — the stack may contain
mixed types because both integers and floating point values are passed as 64bit, so do pointers.

3.5. Return values

The callee returns the values in the appropriate register with respect to the value type:
e integer or pointer value is returned in rax,
¢ floating point value is returned in xmm0 (a lower 128bits of the ymm0 AVX extensions thus
values can be also referenced as ymm0),
e multiple values are returned as pointer to the structure. The pointer is returned in rax register.

4. Integrating .NET and assembler native code:

Cooperation between managed and native code is possible with means of wrappers. Fortunately most of the
job is done through .NET compiler but unfortunately, creating one solution with managed and unmanaged
code is pretty tricky. This laboratory scenario assumes the user interface is created using .NET framework
(C# language) while computation is done by the native (assembler) code. The .NET party is not limited to
the WPF model as presented here — actually any .NET but also C++ native and managed code is capable to
call pure, assembler, native code. For the simplicity, this lab uses WPF (Windows Presentation Foundation)
direct model (in opposite to the MVVM model) but the .NET application could be anything from command
line app to the web application. In any case, the assembler — native code is organized as a DLL library
(originally as C++ dll model, then ported to the assembler code) with code organized as a set of computation
functions, embedded into the main, .NET application. It is essential to note that native code is not managed
by the .NET framework memory management (particularly Garbage Collector that may relocate variables
and classes through stack and heap) so to persist the pointers between managed and unmanaged code it is
essential to mark managed code prototypes as unsafe and .NET structures as fixed, to disable data
relocation due to the .NET Garbage Collector tasks.

Managed code | Unmanaged code

|
NET NET Assembler,
application ~ prototypes of [»| | unmanaged

- the unmanaged | code
code
|
|

The following sections present hands-on lab on creating .NET framework WPF simple dialog then creating
a managed code DLL implemented in assembler. If you already own the solution, you may omit the .NET
implementation part and focus on the assembler functions.

Warning. The following hands-on lab assumes you’re using Debug mode only. To generate Release it is
necessary to configure separately some of the settings similar way it is presented for the Debug mode in the
following chapter. It is not done by the compiler automatically, however!

4.1. Tasks to perform during labs

The WPF part assumes there is a dialog box with set of controls providing one (or many) functionalities:
¢ Adding at least 2 integer values given by values within text boxes.
e Adding at least 2 floating point values (mixed - float, double) given by values within text boxes.
e (alculating sum of an array of integers given by the table (int array).

Page 5 0f 23

LAB PiA i

Ex.9. Integrating .NET and x64 native assembler code in one solution e)

e Computing the weighted average of the four products given by the double and integer each, using
SIMD and mixed mode.

e Performing some operation on the image (byte array).
The underlined scenario’s implementation is presented in the following chapters.

4.2. Solution
The .NET solution is composed of the two projects:
e a WPF dialog box (UI),
e a C++ DLL library project, converted to handle assembler code.

4.2.1. Create new projects and constitute solution
Start Visual Studio then create new project [Menu: File->New->Project]. Choose: [Installed->Visual C#-
>WPF Application]. This creates WPF application (a user interface). Give it some reasonable name.

b Recent .NET Framework 4.5 - Sortby: Default
4 |nstalled

£ e L 2 L o - Visual C#
| | Win : Forms Application Visual C# Type: Visual C
4 Templates = | — Windows Presentation Foundation client

fisual Basic WPF Application Visual C# appicatin
Console Application Visual C#
Class Library Visual C#
Class Library (Portable) Visual C#
WPF Browser Application Visual C#
Empty Project Visual C#
Visual C#
WPF Custom Control Library Visual C#
Eereri] WPF User Control Library Visual C#

b Online Win : Forms Control Library Visual C#

WpfApplicationl
\private\Przedmioty 64 pure assembler application’,

Solution name:

Page 6 0f 23

LAB PiA

Ex.9. Integrating .NET and x64 native assembler code in one solution

Once created, add another project that will hold the assembler code inside. This is C++ DLL project. To do
so, right click the [Solution] in the Solution Explorer window, then choose: [Add->New Project]. Mind that
you need to right click the [Solution], not the [Project] (right click menu varies by context):

= Solution Explorer
@ o-renailm © &=

e

Search lution Explorer (Ctrl+

== én_lufiu_r! "Wpful' {1 project)
Build Solution Ctrl+Shift+B WpfUl
Rebuild Sclution # Properties
=B References
¥.1 App.config

1 App.xamnl
Batch Build... M MainWindow.xaml

Configuration Manager...

Clean Solution

Run Code Analysis on Solution Alt+F11

Manage NuGet Packages for Solution...
Enable NuGet Package Restore
Power Commands
MNew Solution Explorer View
Show on Code Map
Calculate Code Metrics
Mew Project... Add
Existing Project... Set StartUp Projects...
MNew Web Site... Add Solution to Source Control...
Existing Web Site...
‘O Mew ltem... Ctri+Shift+A I Rename
%0 Exsting ltem... Shift+ Alt+A
'ﬁ Mew Solution Folder

Open Folder in File Explorer

Properties Alt+Enter

then choose [Empty Project Visual C++], give it some name and accept:

b Recent NET Framework 4.5 ~ Sort by: Default

4 |nstalled ++ ;
| | Blank App (Universal Apps) Visual C++ Type: Visual C++

b Visual Basic i : An empty project for creating a local
b Visual C# ~] Hub App (Universal Apps) Visual C++ ERGeatnn
4 Visual C++ B
b Store Apps B Win32 Console Application Visual C++
ATL

CLR _---, Pivot App (Windows Phone) Visual C++
General

MFC ™ MFC Application Visual C++
Test o
Win32
I Visual F#
SQOL Server
b JavaScript
Python
I+ TypeScript

WebView App (Windows Phone) Visual C++
Win32 Project Visual C++
Empty Project Visual C++
B I.Jroject T}rpes DirectX App (Universal Apps) Visual C++
Modeling Projects

b Online ~] DirectX and KAML App (Universal Apps) Visual C++

DLL (Universal Apps) Visual C++

Name: _Asr_"rl|

Location: CASVN\private\Przedmioty\New Pil\lab 9 x64 .NET WPF & assembler\WpfUl

Cancel

Page 7 0f 23

LAB PiA o3Fe,

Ex.9. Integrating .NET and x64 native assembler code in one solution L)

4.2.2. Add source files
The WPF User Interface has created some empty dialog box (will return to this later) but assembler project
is empty. To create an empty source file in assembler project, right click the [Project] in the Solution
Explorer, choose [C++ File (.cpp)], change its extension to “.asm” then click [Add] as presented below:

4 Installed Sort by: Default - & |l Search Installed Templates (Ctri+E P~

4 Visual C++ = SR
I-__I C++ File (.cpp)
L‘” : Creates a file containing C++ source code
;ﬂj: ﬁ_fl Header File (.h) Visual C++
Data
Resource
VWED
Utility
Property Sheets
Test

Graphics

b Online

Mame: AsmlLibrary.asm

Location:

Repeat the step above to add the exporting definition file (.def) for the linker. Mind that the file needs to
have the same name as your .asm file and the extension should be .def.

Your solution should look similar to the image below:
Solution Explorer

|2 AsmLibrary.def
4 [cs] Wpful
b S Properties
b =@ References

'rj App.config
b) Appaxaml
b MainWindow.xa

In the example above, the compiler will create Asm.dll (the dll name is the project name, not a source file
name).

The assembler source file (.asm) contains assembler functions that will constitute the library, while .def file
informs the compiler, which function are provided for the rest of the code (here the caller is the WPF UI

Page 8 0f 23

et
b

. S
LAB PiA A
Ex.9. Integrating .NET and x64 native assembler code in one solution \(Ei%i%,

app). Whenever there is new function added to the assembler code, the .def file should be updated along
with appropriate function name.

4.2.3. Constructing the building order dependencies and compiler configuration
The compiler uses somehow “unusual”! combination of the managed and native code, so you need to
inform the compiler how to compile the assembler library when building the solution (and how to maintain
the rebuild order, when necessary) It is done via building customization. To do so, right click the assembler
library project and choose [Build Dependencies->Building Customization] then check: [masm(.targets,
.props)] and accept clicking [OK] as presented below:

Available Build Customization Files:

| Name Path
[] ImageContentTask(.targets, .pr... S(VCTargetsPath)\BuildCustomizations\ImageContentTask.targets
[] Ie(targets, .props) S(VCTargetsPath)\BuildCustomizations\lc.targets

masm(targets, .props) $(VCTargetsPath)\BuildCustomizations\masm.targets |

[_] MeshContentTask(targets, .pro... S(VCTargetsPath)\BuildCustomizations\MeshContentTask.targets
[] ShaderGraphContentTask(.targ... S(VCTargetsPath)\BuildCustomizations\ShaderGraphContentTask.t

Find Existing... Refresh List oK Cancel

! The Visual Studio is capable to compile dozens of different targets and platforms. “Unusual” does not mean “unknown” — the native
assembler coding is considered somehow uncommon now and for geeks/professionals than for regular programmers as it provides
great performance to the results but is quite hard and not so user friendly as high level languages. One need to “enable” this feature of
the compiler before use.

Page 9 0of 23

. e
LAB PiA iy lif
{“xf A ’

Ex.9. Integrating .NET and x64 native assembler code in one solution

Current default configuration for the C++ project (assembler project) states it is Win32 (x86, 32-bit
application). To switch from x86 to x64 code it is necessary to construct new solution platform — an Intel
x64 code. To do it, right click [Solution] then choose [Configuration Manager]. In the dialog box select
assembler project then expand the combo in the “Platform” column and select <New...>:

Active solution configuration: Active solution platform:
iDebug v: | Mixed Platforms

Project contexts (check the project configurations to build or deploy):

Project Configuration Platform

P Debug I_:: R ¥

Wpful Debug Win32
<Edit...»

Once the “New Project Platform” appears, set “x64” in “New platform:” and set “Copy settings from:” to
“Win32”. This will preserve all setting done to the project till now:

New platform:

x4

Copy settings from:
| Win32

Create new solution platforms

The active configuration should change to x64 (previously Win32) now.

Page 10 of 23

LAB PiA

Ex.9. Integrating .NET and x64 native assembler code in one solution

Now one need to inform the compiler, that source assembler code (.asm file) should be handled by the
Masm (assembler) compiler. To do so select the assembler source file in the solution explorer then right
click the file (.asm) and then choose [Properties]. Within the [Configuration Properties->General] section
change [Item Type] to “Microsoft Macro Assembler” then click [OK]:

Configuration: .Active(Debug] v‘ Platform: !.ﬁcﬁve(:cﬁd) v Configuration Manager...

4 Configuration Properties | 4 General
General Excluded From Build
b Microsoft Macro Assemble Content

ltem Type

Item Type
Item type determines the build tool or the file

[0][cmes || ooy

Page 11 of 23

LAB PiA Eli

Ex.9. Integrating .NET and x64 native assembler code in one solution "i\f'z‘%%f

Following step is to inform the compiler on the building order and the building target. The model assumes
dynamic DLL loading (during runtime) so the binary, compiled DLL library has to be located in the same
directory as your WPF UI application.

To do so, right-click the [Solution] in the Solution Explorer window then choose [Project Dependencies],
choose your WPF UI project and mark that its building is depending on the assembler library (this way your
assembler library is compiled first, before your WPF application):

Dependencies | Build Order
Projects:

WpfUl

Depends on:
[wl Asm

Page 12 of 23

LAB PiA

Ex.9. Integrating .NET and x64 native assembler code in one solution

Now it is necessary to switch the project from the empty to let it create DLL file. Right click the assembler
project, choose [Properties]. Then set the following set of configuration properties:
¢ in the [Configuration Properties->General] set:
o “Target Extension” to .dll
o “Configuration Type” to “Dynamic Library (.dll)”

Configuraticon: |Active{Debug]l “ | Platform: !Active{xﬁ-#] v| | Configuration Manager... |

S(SolutionDir)$(Platform)S(Configuration)', ~
Intermediate Directory S(Platform)\S(Configuration),

Target Mame S(ProjectMame)

Target Extension Adll

.cdf;.cache™.obj*.illc*.resources;™ tlb* thi;* thh;* trmp;”
Build Log File S(IntDir)S(M5BuildProjectMame].log

Platform Toolset Visual Studio 2013 (v120)

Enable Managed Incremental Build Mo

4 Common Properties Cutput Directory
References

4 Configuration Properties
General
Debugging
VC++ Directories
Linker
Manifest Tool

XML Document Generator

Bxtensions to Delete on Clean

Browse Information

Build Events

Custom Build Step
Microsoft Macro Assemble

4 Project Defaults

Configuration Type Dynamic Library (.dil}

Uze of MFC Use Standard Windows Libraries
Character Set Use Multi-Byte Character Set

Common Language Runtime Suppor Mo Common Language Runtime Support

Configuration Type
Specifies the type of cutput this configuration generates.

Code Analysis

P T e ¥ Bl 1AM -] ul . O s - s

ok || cCancel ||

Page 13 of 23

LAB PiA

Ex.9. Integrating .NET and x64 native assembler code in one solution

¢ in the [Configuration Properties->General->Linker->Input]:
o provide your definition (.def) file in the “Module Definition File” property

Configuration: | Active(Debug) “ | Platform: !Active{xﬁ-#] v| | Configuration Manager...

4 Configuration Properties » Additional Dependencies kernel32.lib;user3d.lib;gdi32.libwinspool lib;comdlg32.lik
General Ignore All Default Libraries
Debugging lgnore Specific Default Libraries
VC++ Directories Module Definition File AsmLibrary.def| v

4 Linker Add Module to Azzembly
General

Input
Manifest File
Debugging

Ermbed Managed Resource File
Force Symbol References
Delay Loaded Dlls

Assemnbly Link Resource
Systern

Optimization
Embedded IDL
Windows Metadata
Advanced

All Options
Command Line

Module Definition File
The /DEF option passes a module-definition file (.def) to the linker. Only one .def file can be

bpfandect Too) specified to LINK.

oK | | Cancel Apply

Page 14 of 23

LAB PiA

Ex.9. Integrating .NET and x64 native assembler code in one solution

¢ in the [Configuration Properties->General->Linker->System] set:
o “Subsystem” to “Windows (/SUBSYSTEM:WINDOWS)”

Configuration: | Active(Debug) v| Platform: !Active{xﬁ-#] v| | Configuration Manager... |

4 Configuration Properties A Windows (/SUBSYSTEM:WINDOWS) v

General Minimum Required Version
Debugging Heap Reserve Size
WC++ Directories Heap Commit Size

4 Linker Stack Reserve Size
General

Stack Commit Size
Input

Manifest File
Debugging
System
Optimization
Embedded IDL
Windows Metadata
Advanced

All Options
Command Line

Enable Large Addresses
Terminal Server

Swap Run From CD
Swap Run From Metwork

Driver

SubSystem
The /SUBSYSTEM option tells the operating system how to run the .exe file. The choice of

hanifect Tanl : : : : ;
5 3 subsystem affects the entry point symbol (or entry point function] that the linker will choose,

oK || Cancel H Apply

Page 15 of 23

LAB PiA

Ex.9. Integrating .NET and x64 native assembler code in one solution

e in the [Configuration Properties->General->Linker->Advanced] set:
o “No Entry Point” to “Yes(/NOENTRY)”

Configuration: | Active(Debug) v| Platform: !Active{xﬁ-#] v| | Configuration Manager... |

4 Configuration Properties » Entry Point

General Mo Entry Point Yes (/NOENTRY)

Debugging Set Checksum Mo
VC++ Directories Base Address
4 Linker Randomized Base Address Yes (/DYMNAMICBASE)
General Fixed Base Address

Input Data Execution Prevention (DEP) Yes (fMXCOMPAT)
Manifest File

. Turn Off Assembly Generation Mo
Debugging

Unload delay loaded DLL

Meobind delay loaded DLL

Import Library S(0utDir)5(TargetMame).lib
Merge Sections

Target Machine Machinexed (/MACHIME: X64)

No Entry Point
The /MOENTRY eption is required for creating a resource-only DLL.Use this option to prevent LINK
from linking a reference to _main into the DLL.

Systern
Optimization
Embedded IDL
Windows Metadata
Advanced
All Options
Command Line

t: Banifect Tanl

oK || Cancel H Apply

and then click [OK].

Page 16 of 23

LAB PiA i

Ex.9. Integrating .NET and x64 native assembler code in one solution i\fg%%f

4.3. Common output directory

The solution is composed of two projects each of them is compiled independently. When compiling the
DLL, the target (resulting, compiled) file should be injected into the user interface project to let the WPF Ul
be able to load it dynamically (it expects it in the current directory regarding the .exe location). VS does
provide various macros with the appropriate directory names, unfortunately they are limited to the single
project and the entire solution. The only reasonable idea is to create separate target folder on the solution
level that can be referenced by both projects and thus integrate two outputs. Unfortunately the output
directory is set different way in the different projects.

To set the output project for the assembler party, right click the assembler project in the Solution Explorer
window then select [Properties]. Browse to [Configuration Properties->General] and verify if “Output
Directory” contains: $(SolutionDir)$(Platform)\$(Configuration)\ . Correct if necessary.

Configuraticon: .Active{[}ebug] v| Platform: ;Active{xﬁ-i:l vl | Cenfiguration Manager...

- Common Properties Qutput Directory ${SolutionDir)$(Platform)\$(Configuration) v ~

4 Configuration Properties Intermediate Directory S(Platform)\S(Configuration),
General Target Name &(ProjectMarme)
Debugging Target Extension il
WC++ Directories Extensions to Delete on Clean *.cdfi*.cache™.obj:*.ilk;*.resources; ™ b tli;* tHh:* tmp;*
Linker Build Log File §(IntDir) $(MSBuildProjectName).log
bilaniet Joml Platform Toolset Visual Studio 2013 (v120)
W Becmint Genpraos Enable Managed Incremental Build Mo
Project Defaults
Configuration Type Dynamic Library (.dil}
Use of MFC Use Standard Windows Libraries
Character Set Use Multi-Byte Character Set
Common Language Runtime Suppor Mo Common Language Runtime Support

AL 1L P, TP s - ¥ Bla 1Al - n P, P M Fis
Qutput Directory
Specifies a relative path to the cutput file directony; can include environment variables,

Browse Information

Build Events

Custom Build Step
Microsoft Macro Assemblg
Code Analysis

While compiling, the above setting will compile the assembler DLL in to the following directory:
<solution>\x64\Debug (or <solution>\x64\Release, regarding your current build mode).

Page 17 of 23

LAB PiA

Ex.9. Integrating .NET and x64 native assembler code in one solution

Now it is time to let WPF UI application compile into the same directory as assembler project does. This is
done for Debug mode and for Release mode independently. Right click the WPF UI project in the Solution
Explorer then select [Properties]. Choose “Build” on the left then switch “Configuration:” to “Active
(Debug)” or “Debug” when necessary, choose “Platform target:” to “x64”, provide “Output path:” equal
“x64\Debug”.

Remember to check “Allow unsafe code” (otherwise unsafe clause will cause compile errors).

The configuration for the “Debug” is presented below:

WpfUul & x
Application

m Configuration: | Active (Debug) Platform: | Active (Any CPLU)

Build Events General

Debag Conditional compilation symbols: |

R
S HHILEES Define DEBUG constant

Services
R Define TRACE constant
Settings
Platform target:
Reference Paths

Signing
Allow unsafe code
Security

| Optimize code
Publizh

Cincde Anahysrs Errors and warnings
Warning level:

Suppress warnings:

Treat warnings as errors

® Mone

) All
() Specific warnings:

Output

Output path: w6 Debugh, Browse...

[] XML documentation file:

Generate serialization assembly:

Advanced...

Page 18 of 23

LAB PiA

Ex.9. Integrating .NET and x64 native assembler code in one solution

By default, the debugging is limited to the managed code only. To enable debugging of both kinds of code
(even in one debug session!) it is necessary to right click WPF UI project then select [Properties], navigate

to the Debug tab and check “Enable native code debugging™:

WpfUl & X
Application
Build

Build Events
Debug
Resources
Services
Settings
Reference Paths
Signing
Security
Publish

Code Analysis

Configuration: | Active (Debug)

Start Acticn
(®) Start project
(") Start external program:
() Start browser with URL:
Start Options

Command line arguments:

Woaorking directony:
[] Use remote machine
Enable Debuggers

Enable native code debugging
[] Enable SOL Server debugging

Enable the Visual Studic hosting process

Platform:

Active (Any CPL)

Page 19 of 23

LAB PiA e

Ex.9. Integrating .NET and x64 native assembler code in one solution L)

4.4. Compile the project

Empty assembler project won’t compile successfully. It is necessary to provide at least minimum assembler
code into the assembler (.asm) file:

.data
.code

end
and minimum information to the definition (.def) file:

LIBRARY "Asm"
EXPORTS

The project should create the appropriate output directory and generate both assembler DLL and WPF UI
executable in the single directory. The Output window shall contain the information on successfully
compiled two projects:

S ::.lj:l

: Asm, Configuration: Debug xB64

eating library C: rate? i W PiAY xB4 .MET WPF & a
m.lib and obj v \Przed \Mew PiA\ w64 .MET WPF &

proj : Nyprivate\Przedmioty\New PiA\lab 9 x64 .NET WPF & assembler‘\WpfUIY
m.dll

---- Rebui j IpFUI, Configuration: Debug

WpFUI -> C:\SVN\ X dmiotyi\Mew PiA‘lab 9 x&64 .NET WPF &

pFUT.

The target (build) folder should contain:

Mame . Date modified Size Type

%) Asm.dll 2015-04-08 1615 9KB Application extens...
#8 Asm.exp 2015-04-08 1615 1KB Exports Library File
M Asmiilk 2015-04-08 1815 26 KB Incremental Linke...
BEE Asm.lib 8 1615 2KB Object File Library
& Asm.pdb 2015-04-08 1615 100KE Program Debug D...
|E“_?] WipfUl.exe 2015-04-08 16:15 2KB Application

%21 WpfUl.exe.config 2015-04-08 11:48 1KB XML Configuratio..,
& WpfUl.pdb 2015-04-08 1615 24 KB Program Debug D...
(57 WpfUlvshost.exe 2015-04-08 16:07 23 KB Application

¥ WpfUlvshost.exe.config 2015-04-08 11:48 1KB XML Configuratio...

Page 20 of 23

LAB PiA ¥

Ex.9. Integrating .NET and x64 native assembler code in one solution L

5. Implementation

Implementing simple technology sampler that performs adding operation on two floats require two input
boxes for input, one for output and a button triggering operation:

The XAML code of the UI may look this:

Window x:Class
xmlns

xmlns:x
Title Width

StackPanel Margin HorizontalAlignment Orientation
VerticalAlignment

Label>A:</Label

TextBox Width

Label>+ B:</Label

TextBox Width

Label>=</Label

Button Content

TextBox Width

StackPanel

Window

Page 21 of 23

LAB PiA a5

Ex.9. Integrating .NET and x64 native assembler code in one solution

e

Observe the button on-click event (Button Click) that will handle operation. This function appears
automatically once you click the button within the UI designer window. The empty, Button Click function
is added to the “code behind” in C# language (the file with the name of the dialog windo and extension

xaml.cs:

namespace WpfUI

To importing the DLL into the C# it is necessary to provide using directive on
System.Runtime.InteropServices namespace and provide function prototype with arguments
identical to the assembler implementation. Moreover it is essential to mark this code as unsafe to let the
Garbage Collector do not move the pointers and do not modify the memory.

Sample implementation may look similar to the:

using System.Runtime.InteropServices;

public class AsmProxy|

[D11Import("Asm.d11")]
private static extern double asmAddTwoDoubles(double a, double b);

public double executeAsmAddTwoDoubles(double a, double b)

return asmAddTwoDoubles(a, b);

Once the code is ready the click handler can be implemented:

private void Button_Click(object sender, RoutedEventArgs e)

AsmProxy asmP = new AsmProxy();
double a, b, r;

a = Double.Parse(txtA.Text); //convert argument 1 from text (WPF UI) to double
b = Double.Parse(txtB.Text); //convert argument 2 from text (WPF UI) to double
r = asmP.executeAsmAddTwoDoubles(a, b);//execute assembler code

Result.Text = r.ToString(); //return value to the WPF UI as text

Page 22 of 23

LAB PiA

Ex.9. Integrating .NET and x64 native assembler code in one solution

Before final compiling, the assembler implementation requires providing the assembler code in the
assembler source (.asm) file, i.e.:

asmAddTwoDoubles endp

and corresponding export definition (.def) file:

LIBRARY "Asm"
EXPORTS
asmAddTwoDoubles

The function above (asmAddTwoDoubles) is a leaf function thus does not require stack modification on
return (RSP).

Page 23 of 23

